欢迎访问《现代矿业》杂志官方网站,今天是 分享到:
×

扫码分享

现代矿业 ›› 2025, Vol. 41 ›› Issue (10): 115-125.

• 岩土工程 • 上一篇    下一篇

基于主成分分析与K-Means聚类的砾石颗粒形状分类方法研究

张 智1 王 帅1 胡海伟2 王 旭1 武振伟1   

  1. 1. 华北理工大学矿业工程学院;2. 华北理工大学人工智能学院
  • 出版日期:2025-10-25 发布日期:2025-12-04

Research on the Classification Method of Gravel Particle Shapes Based on Principal Component Analysis and K-means Clustering

  1. 1. College of Mining Engineering,North China University of Science and Technology; 2. College of Artificial Intelligence,North China University of Science and Technology
  • Online:2025-10-25 Published:2025-12-04

摘要: 砾石颗粒形状是影响砾岩力学行为的关键因素,现有形状参数体系存在数量繁多、分 类细则相互关联和重叠等问题,限制了分类方法的适用性。为解决此问题,研究提出了融合多参数 降维与机器学习的砾石颗粒形状分类方法。首先,基于CT扫描技术获取砾石的三维重构数据,通过 Python程序分别计算砾石颗粒的形状、圆度和球度等形状参数;其次,利用皮尔逊相关系数热力图量 化参数间相关性,结合层次聚类与主成分分析,筛选出代表性形状参数;最后,采用K-Means聚类方 法,通过肘部法则、轮廓系数确定最佳聚类数,并将砾石颗粒形状分成了 3 或者 4 类,简化了分类方 法。研究所提出的砾石颗粒形状分类方法可为砾岩力学性能分析和资源高效开发提供参考。

关键词: 砾石颗粒形状, 主成分分析, K-Means聚类, 机器学习, 分类方法

Abstract: The morphology of gravel particles is a critical factor influencing the mechanical behavior of conglomerates. The existing shape parameter systems are characterized by an excessive number of indices and overlapping classification criteria,which limit the applicability of classification methods. To address these issues,this study proposes a novel gravel particle shape classification method that integrates multi-pa⁃ rameter dimensionality reduction with machine learning. Initially,three-dimensional reconstruction data of gravel particles are obtained through CT scanning technology,and shape parameters including form,round⁃ ness,and sphericity are calculated using Python programming. Subsequently,Pearson correlation coeffi⁃ cient heatmaps are employed to quantify parameter correlations,and representative shape parameters are se⁃ lected through hierarchical clustering combined with principal component analysis. Finally,the K-Means clustering method is implemented,the optimal number of clusters is determined by the elbow method and silhouette coefficient,resulting in the classification of gravel particle shapes into three or four categories, and the classification method is simplified. The proposed classification method provides valuable insights for analyzing the mechanical properties of conglomerates and optimizing resource development efficiency. Keywords gravel particle morphology,principal component analysis,K-Means clustering,machine learning,classification methods