欢迎访问《现代矿业》杂志官方网站,今天是 分享到:
×

扫码分享

现代矿业 ›› 2025, Vol. 41 ›› Issue (09): 211-216,221.

• 安全·环保 • 上一篇    下一篇

基于机器学习算法的鞍山铁矿区周边植被分类研究

刘芸含1 韩 颖1 侯 英2 印明灏1 余俊影1 朱瑞寒1 李俊卓1 马占武1   

  1. 1. 辽宁科技大学土木工程学院;2. 辽宁科技大学矿业工程学院
  • 出版日期:2025-09-25 发布日期:2025-11-07

Research on Vegetation Classification around Anshan Iron Mine Area Based on Machine Learning Algorithm

  1. 1. School of Civil Engineering,University of Science and Technology Liaoning; 2. School of Mining Engineering,University of Science and Technology Liaoning
  • Online:2025-09-25 Published:2025-11-07

摘要: 为了探究矿区植被变化情况及其受矿区开采活动的影响,针对鞍山周边铁矿区植被分 类监测问题,进行了基于Landsat5 TM/Landsat8 OLI的影像数据研究。通过使用相关影像数据对鞍山 周边四大铁矿区近 40 a来的植被分类情况进行了监测与分析,采用随机森林算法,结合各类植被光 谱指数和纹理指数构建了适用于研究区的随机森林树,完成了该区域植被类型分类,将研究区分为 草地、非植被、灌丛、阔叶林、农田、针叶林 6类,以 5 a为 1个时间间隔进行分类与精度评价。研究得 到的总体精度均在 78.69% 以上,Kappa系数均值为 81.97%,1999年精度最高为 89.52%,2007年精度 最低为78.69%,表明该机器学习算法总体分类精度良好;矿区植被类型主要由天然草地转变为以灌 丛、针叶林和阔叶林为主的植被类型,矿区开采活动对周边植被产生了较大的影响。

关键词: 矿区植被, 随机森林法, 遥感监测, 植被变化

Abstract: In order to explore the change of vegetation in mining area and its influence by mining ac⁃ tivities,aiming at the problem of vegetation classification and monitoring in iron ore area around Anshan, the image data based on Landsat5 TM/Landsat8 OLI is studied.By using the relevant image data,the vege⁃ tation classification of the four major iron ore areas around Anshan in the past 40 years is monitored and analyzed. By using the random forest algorithm,combined with various vegetation spectral indices and tex⁃ ture indices,a random forest tree suitable for the study area is constructed,and the vegetation type classi⁃ fication in this area is completed. The study is divided into six categories: grassland,non-vegetation, shrub,broad-leaved forest,farmland and coniferous forest. The classification and accuracy evaluation are carried out at a time interval of 5 years.The overall accuracy of the research is above 78.69%,and the aver⁃ age Kappa coefficient is 81.97%. The highest accuracy in 1999 is 89.52%,and the lowest accuracy in 2007 is 78.69%,indicating that the overall classification accuracy of the machine learning algorithm is good.The vegetation types in the mining area are mainly transformed from natural grassland to shrub,conif⁃ erous forest and broad-leaved forest.The mining activities in the mining area have a great impact on the surrounding vegetation.

Key words: mining area vegetation, random forest method, remote sensing monitoring, vegetation change