欢迎访问《现代矿业》杂志官方网站,今天是 分享到:
×

扫码分享

现代矿业 ›› 2025, Vol. 41 ›› Issue (09): 1-8.

• 选矿智能化 •    下一篇

基于多重优化卷积神经网络模型的镜下矿物智能分割识别研究

唐方强   

  1. 成都理工大学地球与行星科学学院
  • 出版日期:2025-09-25 发布日期:2025-11-03

Research on Intelligent Segmentation and Recognition of Minerals under Microscope Based on Multiple Optimized Convolutional Neural Network Model

  1. College of Earth and Planetary Sciences,Chengdu University of Technology
  • Online:2025-09-25 Published:2025-11-03

摘要: 为了精准获取镜下矿物,并为矿物精细分割提供技术支撑,提出了一种多重优化UNet 模型对矿物薄片进行分割,提高矿物精准识别方向图像分割任务的精度。改进的模型编码器融合了 resnet50结构,并使用了动态加权通道空间注意力与多尺度边缘检测模块来最大化解决矿物蚀变过 渡带的边界模糊问题,同时解码器也添加了注意力机制,使其在解码时更加精准地解译编码器获取 到的特征,并采用迁移学习的方法来提高效率。通过选用常见造岩矿物进行模型训练,试验结果表 明,该模型可以有效地将矿物从背景杂基中分割出来,矿物分割验证值损失率 18%,平均交并比值 82%,精确率92%,能够实现较为精确的矿物分割,可为矿物精准分割识别提供技术支持。

关键词: UNet, resnet50, 动态加权通道空间注意力, 多尺度边缘检测 迁移学习, 语义分割

Abstract: In order to accurately obtain the minerals under the microscope and provide technical sup⁃ port for the fine segmentation of minerals,a multi-optimized UNet model is proposed to segment the mineral flakes to improve the accuracy of the image segmentation task in the accurate identification direction of min⁃ erals.The improved model encoder integrates the resnet50 structure,and uses the dynamic weighted channel spatial attention and multi-scale edge detection module to maximize the solution to the boundary blur prob⁃ lem of the mineral alteration transition zone.At the same time,the decoder also adds an attention mechanism to make it more accurate to interpret the features obtained by the encoder during decoding,and uses the transfer learning method to improve efficiency.By selecting common rock-forming minerals for model train⁃ ing,the experimental results show that the model can effectively segment minerals from the background ma⁃ trix. The loss rate of mineral segmentation verification value is 18%,the average intersection ratio is 82%, and the accuracy rate is 92%. It can achieve more accurate mineral segmentation and provide technical sup⁃ port for accurate mineral segmentation and recognition.

Key words: UNet, resnet50, dynamic weighted channel spatial attention, multi-scale edge detection, transfer learning, semantic segmentation