欢迎访问《现代矿业》杂志官方网站,今天是 分享到:
×

扫码分享

现代矿业 ›› 2025, Vol. 41 ›› Issue (06): 233-236.

• 实用技术 • 上一篇    下一篇

冻融循环对尾砂胶结体强度变化的影响

王晓义 陈 超   

  1. 华北理工大学矿业工程学院
  • 出版日期:2025-06-25 发布日期:2025-08-06

Influence of Freeze-thaw Cycle on the Strength Change of Tailings Cemented Body

  1. School of Mining Engineering,North China University of Science and Technology
  • Online:2025-06-25 Published:2025-08-06

摘要: 以庙沟铁矿尾砂为研究对象,通过冻融循环试验,系统探究了不同灰砂比(1∶6、1∶8)和 料浆浓度(75%、78%)条件下尾砂胶结体的强度变化规律及其损伤机制。结果表明,随着冻融循环次 数的增加,尾砂胶结体的孔隙度显著增大,纵波速度损失率逐渐升高,抗压强度和抗拉强度均呈现明 显劣化趋势。其中,灰砂比 1∶6、料浆浓度 75%的试样,在 30次冻融循环后孔隙度增长至 19.30%,波 速损失率达65%。低灰砂比(1∶8)试样表现出更好的抗损伤能力,高料浆浓度(78%)试样在冻融循环 中表现出更低的强度缩减幅度。研究结果揭示了冻融循环对尾砂胶结体宏观力学性能与微观结构 的损伤机制,为寒冷环境下尾砂胶结体的工程应用提供了理论依据。

关键词: 冻融循环, 孔隙度, 纵波速度, 抗压强度, 抗拉强度

Abstract: Taking the tailings of Miaogou Iron Mine as the research object,the strength variation law and damage mechanism of tailings cemented body under different cement-sand ratios(1:6,1:8)and slurry concentrations(75%,78%)were systematically investigated by freeze-thaw cycle test. The results show that with the increase of freeze-thaw cycles,the porosity of tailings cement increases significantly,the loss rate of longitudinal wave velocity increases gradually,and the compressive strength and tensile strength show a significant deterioration trend. Among them,the porosity of the sample with a cement-sand ratio of 1∶6 and a slurry concentration of 75% increased to 19.30% after 30 freeze-thaw cycles,and the wave veloci⁃ ty loss rate reached 65%. The sample with low cement-sand ratio(1∶8)showed better damage resistance, and the sample with high slurry concentration(78%)showed lower strength reduction during freeze-thaw cycles. The research results reveal the damage mechanism of freeze-thaw cycle on the macroscopic mechani⁃ cal properties and microstructure of tailings cemented body,which provides a theoretical basis for the engi⁃ neering application of tailings cemented body in cold environment.

Key words: freezing and thawing cycle, porosity, longitudinal wave velocity, compressive strength, ten? sile strength