欢迎访问《现代矿业》杂志官方网站,今天是 分享到:
×

扫码分享

现代矿业 ›› 2023, Vol. 39 ›› Issue (01): 207-.

• 材料·装备 • 上一篇    下一篇

基于BP 神经网络的双叶轮浮选机选矿效率预测研究

陈飞1 随婕斐1,2 李智力1,3 张泽强1 秦芳1 唐远1 何东升1   

  1. 1. 武汉工程大学资源与安全工程学院;2. 北京冶金工业出版社有限公司; 3. 武汉工程大学磷资源开发利用教育部工程研究中心
  • 出版日期:2023-01-25 发布日期:2023-05-12
  • 基金资助:
    国家重点研发计划项目(编号:2019YFC1905801);湖北省高等学校优秀中青年科技创新团队计划项目(编号:T2021006);武汉工程大学校内科学基金研究项目(编号:K2021099,K202064);湖北三峡试验室开放基金项目(编号:SK211008);磷资源开发利用教育部工程研究中心开放基金项目(编号:LCX2021006)。

Beneficiation Efficiency Prediction of Double Impeller Flotation Machine Based on BP Neural Network

CHEN Fei1 SUI Jiefei1,2 LI Zhili1,3 ZHANG Zeqiang1 QIN Fang1 TANG Yuan1 HE Dongsheng1   

  1. 1. Wuhan Institute of Technology,School of Resources and Safety Engineering;2. Beijing Metallurgical Industry Press Co.,Ltd.;3. Engineering Research Center of Phosphorus Resources Development and Utili⁃ zation of Ministry of Education,Wuhan Institute of Technology
  • Online:2023-01-25 Published:2023-05-12

摘要: 为保证浮选机既有足够的充气量,又能产生矿物浮选所需的静态分选环境,通过将 离心叶轮与搅拌叶轮有机结合,设计了双叶轮控制系统浮选机。在前期研究的基础上,通过固定 双叶轮浮选机离心叶轮结构参数,选取双叶轮浮选机搅拌叶轮直径和转速为输入因子,磷矿选矿 效率为输出因子,建立了双叶轮浮选机选矿效率预测模型,并通过样本检验了模型的准确性。研 究结果表明:建立的BP 神经网络模型能准确预测双叶轮浮选机选矿效率,预测值与试验值的相对 误差一般小于5%;建立的选矿效率预测模型可用于双叶轮浮选机浮选参数的优化控制与决策,可 减少试验量,节省人力、物力和时间。

关键词: BP 神经网络, 双叶轮浮选机, 选矿效率, 预测模型

Abstract: In order to ensure that the flotation machine has sufficient aeration and can produce the static separation environment required for mineral flotation,a double impeller control system flotation machine is designed by combining the centrifugal impeller with the stirring impeller. Based on the previous research,by fixing the structural parameters of the centrifugal impeller of the double-impeller flotation machine,selecting the diameter and speed of the impeller of the double-impeller flotation machine as the in⁃ put factors,and the beneficiation efficiency of the phosphate rock as the output factor,the prediction model of the beneficiation efficiency of the double-impeller flotation machine was established,and the accura⁃ cy of the model was tested by samples. The results show that the established BP neural network model can accurately predict the beneficiation efficiency of double impeller flotation machine,and the relative error between the predicted value and the experimental value is generally less than 5%. The established prediction model of beneficiation efficiency can be used for optimal control and decision-making of flotation pa⁃ rameters of double impeller flotation machine,which can reduce the amount of test and save manpower, material resources and time.

Key words: BP neural network, double impeller flotation machine, beneficiation efficiency, predictive model