欢迎访问《现代矿业》杂志官方网站,今天是 分享到:
×

扫码分享

现代矿业 ›› 2022, Vol. 38 ›› Issue (08): 248-.

• 实用技术 • 上一篇    下一篇

基于多尺度与反复注意力机制的矿井图像分类

李辉1 刘规2 袁航2 王雨晨2   

  1. 1. 安徽界沟矿业有限公司界沟煤矿; 2. 中国矿业大学信息与控制工程学院
  • 出版日期:2022-08-25 发布日期:2023-06-07
  • 基金资助:
    *国家重点研发计划(编号:2018YFC0808302)。

Mine Image Classification Based on Multi-scale and Repetitive Attention Mechanism

LI Hui1 LIU Gui2 YUAN Hang2 WANG Yuchen2   

  1. 1. Jiegou Coal Mine of Anhui Jiegou Mining Co.,Ltd.; 2. School of Information and Control Engineering, China University of Mining and Technology
  • Online:2022-08-25 Published:2023-06-07

摘要: 精确煤矸石分类及识别是煤矿安全精准开采有待解决的重要问题,残差网络在图像 分类任务中表现出巨大的优势。利用残差网络并克服其在特征提取方面的不足,提出了一种矿井 图像分类模型。该模型结合了多尺度思想以及反复注意力方法,同时,还将ResNet 网络特征提取 法加入到模型当中。除此之外,模型还加入了跳跃连接,可以实现减少模型计算量的功能。基于 真实的实验数据,本模型相比其它分类模型准确率提高了3%。

关键词: 煤矸石, 图像分类, 反复注意力, 特征提取

Abstract: Accurate classification and identification of coal gangue is an important problem to be solved in the safe and precise mining of coal mines. Residual network shows great advantages in image clas⁃ sification tasks. Using residual network and overcoming its shortcomings in feature extraction,a mine image classification model is proposed. The model combines multi-scale idea and repeated attention method,and also adds ResNet network feature extraction method to the model. In addition,the jump connection is add⁃ ed to the model,which can reduce the calculation amount of the model. Based on the real experimental da⁃ ta,the accuracy of this model is improved by 3 % compared with other classification models.

Key words: coal gangue, image classification, repeated attention, feature extraction