欢迎访问《现代矿业》杂志官方网站,今天是 分享到:
×

扫码分享

现代矿业 ›› 2022, Vol. 38 ›› Issue (08): 119-.

• 岩土工程 • 上一篇    下一篇

基于PSO-BP 的胶结充填体强度预测研究

石劲1 杜澳宇2 王西兵1 卢骏1 兰建强1 郑先伟1
  

  1. 1. 武钢资源集团程潮矿业有限公司;2. 武汉科技大学资源与环境工程学院
  • 出版日期:2022-08-25 发布日期:2023-06-02

Study on Strength Prediction of Cemented Backfill Based on PSO-BP

SHI Jin1 DU Aoyu2 WANG Xibin1 LU Jun1 LAN Jianqiang1 ZHENG Xianwei1   

  1. 1. WISCO Resources Group Chengchao Mining Co.,Ltd.;2. School of Resource and Environmental Engi⁃ neering,Wuhan University of Science and Technology
  • Online:2022-08-25 Published:2023-06-02

摘要: 为快速、准确地确定胶结充填体强度,构建了基于PSO-BP 的胶结充填体强度预测 模型,并以养护7 d和28 d的胶结充填体强度试验数据进行了验证。结果表明:结合粒子群算法优 化BP 神经网络初始权值,从而大大提高了预测模型的准确性和可靠性,基于粒子群算法优化下的 神经网络相对误差为0.77%,比BP 神经网络预测的平均相对误差降低了3.42%,表现出良好的预 测精度。

关键词: 胶结充填体, PSO-BP , 强度预测模型

Abstract: In order to quickly and accurately determine the strength of cemented backfill,a strength prediction model of cemented backfill based on PSO-BP was constructed and verified with the strength test data of cemented backfill at 7 d and 28 d of curing. The results show that the initial weights of BP neural network are optimized by combining particle swarm optimization algorithm,which greatly improves the ac⁃ curacy and reliability of the prediction model. The relative error of neural network optimized by particle swarm optimization algorithm is 0.77 %,which is 3.42 % lower than the average relative error of BP neural network prediction,showing good prediction accuracy.

Key words: cemented backfill, PSO-BP, strength prediction model