欢迎访问《现代矿业》杂志官方网站,今天是 分享到:
×

扫码分享

现代矿业 ›› 2025, Vol. 41 ›› Issue (10): 40-45,50.

• 采矿工程 • 上一篇    下一篇

断面参数对下向回采进路顶板稳定性影响研究

寇永渊1 贾 峰1 杨清伟1 李正杰1 徐立杰1 石 浪1 李仕民1 张 铭2   

  1. 1. 金川集团镍钴股份有限公司二矿区;2. 北京科技大学土木与资源工程学院
  • 出版日期:2025-10-25 发布日期:2025-12-02

Research on the Influence of Section Parameters on Stability of Downward Mining Drift Roof

  1. 1. No.2 Mining Area of Jinchuan Group Nickel and Cobalt Co.,Ltd.; 2. School of Civil and Resources Engineering,University of Science and Technology Beijing
  • Online:2025-10-25 Published:2025-12-02

摘要: 为解决金川二矿区深部采场资源回采效率不高的问题,采用数值模拟的方式,开展深 部采场回采进路参数优化研究。首先,建立了 6 m×4 m大断面进路采场模型和 5 m×4 m常规断面进 路采场模型;其次,使用 FLAC3D软件模拟下向分层水平进路胶结充填采矿法开采,对大断面和常规 断面进路在回采过程中所受应力值大小及变形规律进行分析研究。结果表明:在回采过程中,常规 断面和扩大断面进路顶板最大下沉量分别为 12.55和 17.2 mm,两帮最大收敛位移值分别为 12.28和 21.56 mm,相比而言,扩大断面后进路顶板和两帮的位移值均有所增大,但增幅不大,说明以上2种断 面尺寸的进路开采所引起周边区域的岩石位移极为接近。常规断面和扩大断面进路顶板在竖直方 向上所受最大压应力分别为0.389 1和0.457 8 MPa,在水平面内垂直于进路推进方向所受最大拉应力 分别为0.254 2和0.297 8 MPa,均小于充填体顶板极限拉应力0.53 MPa。由此可知,下向进路扩大断 面后,顶板充填体承受的最大拉应力增大了17.2%,说明进路宽度对其假顶充填体所受最大拉应力值 有显著的影响,盘区进路断面宽度扩大至6 m是合理可行的。

关键词: 下向进路, 深部采场, 断面优化, 数值模拟, 顶板稳定性

Abstract: To solve the problem of low resource recovery efficiency in the deep mining area of Jinch⁃ uan No.2 Mining area,numerical simulation was used to conduct research on the optimization of deep min⁃ ing drift parameters. Firstly,6 m × 4 m large section drift stope model and 5 m × 4 m conventional section drift stope model were established. Secondly,FLAC3D software was used to simulate the mining method of cemented backfilling with downward layered horizontal drift,and the stress values and deformation laws of large section and conventional section drift during the mining process were analyzed and studied. The re⁃ sults show that during the mining process,the maximum subsidence of the conventional section and en⁃ larged cross-section drift roof is 12.55 and 17.2 mm,respectively. And the maximum convergence displace⁃ ment values of the two sides are 12.28 and 21.56 mm,respectively. Compared to others,the displacement values of roof and two sides have increased after enlarging the cross-section,but the increase is not signifi⁃ cant,indicating that the rock movement in the surrounding area caused by the excavation of the two types of cross-section sizes is extremely close. Besides,the maximum compressive stresses in the vertical direc⁃ tion of the conventional section and enlarged cross-section drift roof are 0.389 1 and 0.457 8 MPa,respec⁃ tively. The maximum tensile stresses in the horizontal plane perpendicular to the direction of the drift are 0.254 2 and 0.297 8 MPa,respectively,which are lower than the ultimate tensile stress of the top plate of the backfill by 0.53 MPa. It can be seen from this that after enlarging the cross-section of the downward drift,the maximum tensile stress borne by the roof backfill increased by 17.2%,indicating that the width of
the drift has a significant impact on the maximum tensile stress value of its false roof backfill,expanding the
drift-sectional width of the panel to 6 m is reasonable and feasible.

Key words: downward drift, deep stope, section optimization, numerical simulation, roof stability