欢迎访问《现代矿业》杂志官方网站,今天是 分享到:
×

扫码分享

现代矿业 ›› 2025, Vol. 41 ›› Issue (05): 235-238.

• 实用技术 • 上一篇    下一篇

基于机器视觉的提升机箕斗挂钩检测方法研究与应用#br#

张德军1,2 毕秀芬3 桑锦国1   

  1. 1. 山东金软科技股份有限公司;2. 招金矿业股份有限公司;3. 山东招金地质勘查有限公司
  • 出版日期:2025-05-25 发布日期:2025-07-31

Research and Application of Detection Method for Hoist Skip Hook Based on MachineVision

  1. 1. Shandong Jinruan Science and Technology Co.,Ltd.;2. Zhaojin Mining Industry Co.,Ltd.; 3. Shandong Zhaojin Geological Survey Co.,Ltd.
  • Online:2025-05-25 Published:2025-07-31

摘要: 矿山提升机作为矿山生产中的重要设备,其运行效率和稳定性直接影响矿山产能和安 全,为解决当前矿山提升机在节能和安全方面存在的问题,通过分析提升机的工作原理,识别电能消 耗的主要环节和影响因素,提出新的电能消耗模型,以便系统评估和比较不同的节能措施。针对提 升机运行中的安全隐患,基于人工智能和机器视觉技术,提出一系列改进措施,旨在提高提升机的工 作效率,降低能耗,并保障工人安全。在研究方法上,采用机器视觉技术对提升机箕斗挂钩的运行状 态进行实时检测,具体包括使用 YOLOv7进行目标检测,Segment Anything 进行实例分割,OpenCV 进 行图处理和角度计算。通过这些技术,能够实时分析挂钩状态,及时预警异常情况并制动,从而有效 避免潜在的安全风险。研究结果表明,系统能显著提高提升机的安全性和自动化水平,能更准确地 检测挂钩状态,并在异常情况下及时发出警报,减少事故发生的可能性,可为相关研究和矿山提供一 定的参考。

关键词: 机器视觉, 大数据算法, 人工智能, 实例分割, 神经网络

Abstract: As an important equipment in mine production,the operation efficiency and stability of mine hoist directly affect mine productivity and safety. In order to solve the existing problems in energy sav⁃ ing and safety of mine hoist,a new power consumption model is proposed by analyzing the working principle of the hoist and identifying the main links and influencing factors of power consumption to systematically evaluate and compare different energy-saving measures. Based on artificial intelligence and machine vision technology,a series of improvement measures are proposed to improve the efficiency of the hoist,reduce en⁃ ergy consumption,and ensure worker safety. In terms of research methods,the machine vision technology is used to carry out real-time detection of the running state of the skip hook of the hoist,including the use of YOLOv7 for target detection,Segment Anything for example segmentation,and OpenCV for graph process⁃ ing and Angle calculation. By these technologies,the status of the hook can be analyzed in real time,and abnormal conditions can be warned and stopped in time,thus effectively avoiding potential safety risks. The research results show that the system can significantly improve the safety and automation level of the hoist, can more accurately detect the hook status,and timely alarm in abnormal circumstances,reduce the possi⁃ bility of accidents,and provide a certain reference for related research and mines.

Key words: machine vision, big data algorithms, artificial intelligence, instance segmentation, neu? ral network