欢迎访问《现代矿业》杂志官方网站,今天是 分享到:
×

扫码分享

现代矿业 ›› 2025, Vol. 41 ›› Issue (09): 217-221.

• 安全·环保 • 上一篇    下一篇

地下金属矿山智能视频监控系统研究

吴昊天   

  1. 安徽马钢罗河矿业有限责任公司
  • 出版日期:2025-09-25 发布日期:2025-11-12

Research on Intelligent Video Monitoring System of a Underground Metal Mine

  1. Anhui Masteel Luohe Mining Co.,Ltd.
  • Online:2025-09-25 Published:2025-11-12

摘要: 为保障地下金属矿山的安全生产,有效减少“三违”行为,研究开发一种地下金属矿山 智能视频监控系统,以实现对矿山生产的实时监测和智能分析。将高清视频采集、边缘或服务器端 智能分析、三维可视化、电子围栏与突发事件预警等功能有机集成,构建了适应高湿度、高粉尘和爆 破冲击的网络与部署架构。经过分析评估后,提出基于卷积神经网络的目标识别,基于时序模型的 行为分析以及迁移学习与在线微调的模型更新策略,以提高识别精度并降低误报率。针对井下环境 对图像质量、设备稳定性和网络传输的影响,提出了设备选型、点位优化、强化维护保养等对策。研 究结果表明:该系统在提升违章行为识别效率,缩短突发事件响应时间,降低巡检劳动强度以及提升 矿山安全管理与生产效率方面具有显著应用价值,并为智慧矿山建设提供了可行路径和实施建议。

关键词: 地下金属矿山, 智能视频监控系统, 人工智能

Abstract: To ensure the safe production of underground metal mines and effectively reduce the "three types of violations" (command violations,operation violations,and labor discipline violations),an intelli⁃ gent video monitoring system for underground metal mines is researched and developed to realize real-time monitoring and intelligent analysis of mine production.Functions such as high-definition video acquisition, edge or server-side intelligent analysis,3D visualization,electronic fencing,and early warning for emer⁃ gency events are organically integrated,and an architecture adapted to high humidity,high dust levels,and blasting impacts is constructed. After analysis and evaluation,target recognition based on convolutional neu⁃ ral networks ,behavior analysis based on temporal models,and a model update strategy combining transfer learning and online fine-tuning are proposed to improve recognition accuracy and reduce the false alarm rate.In view of the impact of the underground environment on image quality,equipment stability,and net⁃ work transmission,countermeasures such as equipment selection,monitoring point optimization,and en⁃ hanced maintenance are put forward.The research results show that the system has significant application value in improving the efficiency of identifying violation behaviors,shortening the response time for emer⁃ gency events,reducing the labor intensity of patrol inspections,and enhancing mine safety management and production efficiency. It also provides a feasible path and implementation suggestions for the construction of smart mines.

Key words: underground metal mine, intelligent video monitoring system, artificial intelligence