欢迎访问《现代矿业》杂志官方网站,今天是 分享到:
×

扫码分享

现代矿业 ›› 2025, Vol. 41 ›› Issue (07): 218-221,229.

• 实用技术 • 上一篇    下一篇

基于IGWO-BP的采空区煤自燃危险等级预测模型研究

粟 闯 张滇豫 容德春 贺文根 刘 聪   

  1. 中铝智能(杭州)安全科学研究院有限公司
  • 出版日期:2025-07-25 发布日期:2025-08-27

Research on Prediction Model of Coal Spontaneous Combustion Risk Grade in Goaf Based on IGWO-BP

  1. Chinalco Intelligent(Hangzhou) Safety Science Research Institute Co.,Ltd.
  • Online:2025-07-25 Published:2025-08-27

摘要: 为准确预测煤自燃危险等级,针对传统BP神经网络模型预测精度低的局限性,提出了 一种将改进的灰狼优化算法(IGWO)与传统BP神经网络相耦合的煤自燃危险等级预测模型。首先, 利用 Tent映射和 Levy飞行提出了一种新型随机动态控制因子,改进了灰狼优化算法(GWO)的开发 能力和收敛速度;然后,通过6个标准测试函数验证了IGWO算法的有效性;最后以采空区的50组样 本数据为研究对象,建立了 IGWO-BP 的煤自燃危险等级预测模型。以相对误差的绝对值作为模型 预测精度的评价指标,与 GWO-BP和 BP模型的预测结果进行了比较和分析。研究结果表明,IGWO 算法相较于传统的灰狼优化算法(GWO)具有更优的收敛速度和预测精度;IGWO-BP模型的预测效 果优于 GWO-BP 和 BP模型,其相对误差绝对值均小于 8%,大幅度提高了预测精度。该研究可为煤 矿自燃火灾的监测和预警提供重要的决策支持。

关键词: 煤自燃危险等级, IGWO, BP神经网络, 相对误差

Abstract: In order to accurately predict the risk level of coal spontaneous combustion,aiming at the limitation of low prediction accuracy of traditional BP neural network model,a prediction model of coal spontaneous combustion risk level coupled with improved grey wolf optimization algorithm(IGWO)and tra‐ ditional BP neural network is proposed.Firstly,a new random dynamic control factor is proposed by using Tent mapping and Levy flight,which improves the development ability and convergence speed of grey wolf optimization algorithm(GWO).Then,the effectiveness of the IGWO algorithm is verified by six standard test functions.Finally,taking 50 sets of sample data in the goaf as the research object,the IGWO-BP predic‐ tion model of coal spontaneous combustion risk level is established.The absolute value of relative error is used as the evaluation index of model prediction accuracy,and the prediction results of GWO-BP and BP models are compared and analyzed.The results show that the IGWO algorithm has better convergence speed and prediction accuracy than the traditional grey wolf optimization algorithm(GWO).The prediction effect of IGWO-BP model is better than that of GWO-BP and BP models,and the absolute value of relative error is less than 8%,which greatly improves the prediction accuracy.This research can provide important decision support for the monitoring and early warning of coal mine spontaneous combustion fire.

Key words: coal spontaneous combustion risk grade, IGWO, BP neural network, relative error