欢迎访问《现代矿业》杂志官方网站,今天是 分享到:
×

扫码分享

现代矿业 ›› 2025, Vol. 41 ›› Issue (10): 23-27.

• 采矿工程 • 上一篇    下一篇

分段凿岩阶段出矿嗣后充填采矿法采场跨度优化及工程应用

李燕芬1,2 向伟华2,3 连欢超2,3 王社光2,3 王培培2,3 杨志强2,3   

  1. 1. 河北钢铁集团矿业有限公司石人沟铁矿;2. 河北省复杂铁矿低碳智能高效开采技术创新中心; 3. 河北钢铁集团沙河中关铁矿有限公司
  • 出版日期:2025-10-25 发布日期:2025-12-02

Optimization of Stope Span and Engineering Application for Sublevel Drilling and Stage Caving with Subsequent Backfilling Mining Method

  1. 1. Shirengou Iron Mine,HBIS Group Mining Co.,Ltd.;2. Hebei Complex Iron Ore Low Carbon Intelligent and Efficient Mining Technology Innovation Center;3. HBIS Group Shahe Zhongguan Iron Ore Co.,Ltd.
  • Online:2025-10-25 Published:2025-12-02

摘要: 为优化中关铁矿分段凿岩阶段出矿嗣后充填采矿法的采场宽度,实现对破碎难采矿体 的安全高效开采,在基于Methew法对采场允许暴露的极限参数优化结果的基础上,按采场高度30 m, 宽度分别为10,12,14,16,18 m进行数值模拟,对比分析不同宽度方案下,采场顶板竖向应力、侧帮水 平位移及塑性区变化规律,进一步确定合理的采场结构参数。结果表明,当采场宽度不大12 m时,采 场可保持稳定;当采场宽度增加至12 m时,需对顶板中部加强支护,方可保持稳定;当采场宽度增加 至14~18 m时,采场稳定性较差。以矿房高30 m,宽12 m和长度不大于50 m,进行分段凿岩阶段出矿 嗣后充填采矿法工程实践,在矿房顶部中间-200 m水平施工护顶巷道,采用预应力长锚索+锚网喷的 联合支护技术进行预控顶。工程实践表明,采场生产能力可达到 3 170 t/d,回采率 88.35 %,贫化率 10.17 %,矿房稳定性较好,可实现安全、高效、经济开采。

关键词: 破碎难采矿体, 分段凿岩阶段出矿, 数值模拟, 宽度优化, 预控顶巷

Abstract: To optimize the stope width in the sublevel drilling and stage caving with subsequent back⁃ filling mining method at Zhongguan Iron Mine,and to achieve safe and efficient extraction of fractured and difficult-to-mine ore bodies,numerical simulations were conducted based on the optimized results of the stope's maximum allowable exposure dimensions derived from the Mathews stability graph method. Simula⁃ tions were performed for a stope height of 30 m and widths of 10,12,14,16,and 18 m. By comparing and analyzing the vertical stress on the stope roof,horizontal displacement of the side walls,and the develop⁃ ment of plastic zones under different width scenarios,the rational stope structural parameters were further determined. The results indicate that the stope remains stable when the width is no more than 10 m. When the width increases to 12 m,additional reinforcement of the central roof area is required to maintain stabili⁃ ty. For widths ranging from 14 to 18 m,stope stability is significantly compromised. Based on these find⁃ ings,engineering practice was implemented using the sublevel drilling and bench caving with delayed back⁃ filling mining method,with stope dimensions of 30 m in height,12 m in width,and a length not exceeding 50 m. A roof protection drift was constructed at the middle of the stope roof at the -200 m level. A combined pre-support technique using prestressed long cable bolts,mesh,and shotcrete was applied for proactive roof control. Field practice demonstrates that the stope achieves a production capacity of 3 170 t/d,with an ore recovery rate of 88.35%,a dilution rate of 10.17%,and excellent stope stability. This confirms the feasi⁃ bility of safe,efficient,and economical mining operations.

Key words: fractured and difficult-to-mine ore bodies, sublevel drilling and stage caving, numerical simulation, width optimization, pre-controlled top lane